Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)
-1(s(x), s(y)) → -1(x, y)
HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)
-1(s(x), s(y)) → -1(x, y)
HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)
-1(s(x), s(y)) → -1(x, y)
HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


-1(s(x), s(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x2)
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
s1 > -^11

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HALF(s(s(x))) → HALF(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
HALF(x1)  =  HALF(x1)
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
s1 > HALF1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DOUBLE(s(x)) → DOUBLE(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DOUBLE(x1)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
if(0, y, z) → y
if(s(x), y, z) → z
half(double(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.